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Abstract—In many occasions of our daily lives, we are
willing to spontaneously interact or collaborate with nearby
people for sharing ideas, chatting, saving time/money, or
helping each other. For that purpose, it is often necessary
to identify and reason about shared context situations that
are based on distributed sources of local contexts. So far,
most of the work that investigates mechanisms to support
spontaneous discovery and interaction among mobile users
has not thoroughly explored means of automatic detection of
common Global Context States (GCS).

In this paper, we discuss a distributed reasoning approach
and algorithm that determines a distributed Global Context
State among potentially interacting agents. We also evaluate
the complexity of the algorithm — through simulation — and
identify how the convergence of the algorithm is influenced by
users’ mobility patterns, the requested minimum number of
contributing agents required to conclude a reasoning process
and the volatility of each agent’s local context.
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I. INTRODUCTION

Collaboration is an essential part of our daily lives. People

collaborate with each other oftenly and for a number of

different reasons, that range from socializing to working

cooperatively to achieve a common goal. As mobile devices

enjoy increasing popularity, new opportunities arise for

pervasive collaboration, especially among people that do

not necessarily know each other previously [1]. However,

pervasive ad hoc (or spontaneous) collaboration requires

means of distributed cooperative reasoning between agents

to enable real-time matchmaking among an open group of

people [2].

A distributed cooperative reasoning system is typically

comprised of independent agents with some means of com-

munication [3]. Each agent runs a reasoning engine, and is

capable of inferring or checking a new piece of informa-

tion that is not explicitly available at its local knowledge

base. Communication architectures frequently used in such

reasoning systems include blackboard or message passing

systems. Blackboard systems rely on a shared data structured

(called a blackboard) where an agent can post information,

as well as read and act on information posted by other

agents. Message passing systems, on the other hand, rely

on agents sending messages to other agents and receiving

messages from other agents as part of a reasoning process.

Another common distinction in distributed cooperative

and rule-based reasoning is the choice between data par-
titioning and rule partitioning. In data partitioning, data is

distributed among agents and no single agent knows all

information available globally; whereas all rules are applied

to each data subset. In rule partitioning, rules are split,

meaning that each agent only checks parts of the rules

against its local data. However, in order to check the original

rule (the conjunction of the parts) on the global state of

all data available, agents have to exchange data among

each other. In this work, we focus on distributed rule-based

reasoning with rule partitioning, and how to accomplish it

in message passing systems.

An important issue of reasoning in pervasive collabora-

tion applications is the determination of a system’s Global
Context State (GCS) [4], that is simply the combination of

all participating agents’ local contexts at a same instant of

time. Concrete examples of such a Global Context State

shared among a group of mobile users are: quality of
connectivity - all user devices are connected through a

high-speed wireless connection, enabling them to use a

collaboration app with high communication demands; or

location - all users are located within less then 200 meters

from a common meeting place, so that they may gather in

a few minutes; or else, phone settings - all users have their

device set to normal ring-tone, implying that all members

of the group are mutually available for some consultation or

chatting.

The determination of the Global Context State has sev-

eral applications in pervasive collaboration. For example,

consider the following scenario: a conference attendee is

interested in meeting with other nearby attendees who are

idle (e.g. waiting in the conference hall) and who share

similar interests or expertise. In this scenario, distributed

reasoning could be used to compare the local context state

of all attendees (i.e. current location, interest/s and expertise)

in order to identify which attendees, if any, match the
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meeting criteria set by the seeking attendee. This would

require the reasoners at the device of each attendee (further

called, Peer Reasoners) to exchange their local context

state information (e.g. current locations) and cooperatively

select which attendees match the criteria. We should further

consider the existence of an additional reasoner, the Ambient
Reasoner, which would act as a communication/coordination

hub for the reasoning process and also provide public

information about the ambient-specific context, such as the

conference program, the layout of the rooms, the room-

specific planned activities, etc. This “ambient context state”,

e.g. the current activity in each room, could also be relevant

for the matching: for example, only attendees located in the

conference hall, the registration desk, or in the restaurant

should be considered for the matching.

The above examples of matching criteria can be defined

by a Description Logic (DL) rule that would better be

split in parts, to be evaluated independently by each of

the Peer Reasoners (at the attendee’s devices) on one side,

and the Ambient Reasoner, on the other side. The former

would handle rule parts/predicates more closely related to

the attendee’s context data and preferences (e.g. current

location, if available or busy, affiliation, interests, etc.); the

latter would process the parts of the rule that refer to public

information (e.g. place-specific activities) and which contain

predicates matching issues, such as a precise definition of

user co-location or proximity.

In this paper we describe an algorithm used for coopera-

tive detection of distributed Global Context States, that is the

basis for distributed cooperative and rule-based reasoning.

The main contributions of this paper are to define the concept

of rule-based Global Context States (GCS), as well as some

required properties and premises, to discuss an algorithm

to determine a distributed GCS among potentially interact-

ing agents and to simulate the execution of the proposed

algorithm. The paper is structured as follows: in Section

II we discuss some related work on distributed (context)

reasoning for pervasive applications. In Section III we define

the concept of rule-based Global Context State, list some

premises and expected properties of possible solutions, as

well as present an overview of the algorithm. In Section IV

we explain how we simulated the algorithm’s execution and

present some results of the simulation. Finally, in Section

V we present some concluding remarks concerning our

approach and future work.

II. RELATED WORK

The present work is largely based on the work by Viterbo

and Endler [5], [6], which explores distributed rule-based

reasoning (with rule partitioning). It proposes a simple two-

tier model comprised of a user/client side and an ambient

side and a protocol that must be executed by both sides to

converge towards the evaluation of a partitioned rule. It also

formalizes the notion of (decentralized) cooperative reason-

ing, discusses the necessary stability conditions required for

convergence. In this work, we extend the aforementioned

two-tier approach to work in with an open set of nodes

contributing to the reasoning process, i.e. detection of the

subset of nodes whose local context satisfies the rule’s

antecedent.

In [7], Padovitz, Loke and Zaslavsky propose and formal-

ize an approach that enables individual nodes to reason about

common context situations by considering distributed infor-

mation. However, instead of presenting a specific approach

for collaborative reasoning, their work’s main focus is on

context model transformations that allow nodes to obtain a

merged perspective of the common context. Since our work

does not consider heterogeneous context models, one can

see their work as complimentary to ours, since it proposes

a solution for merging different context model visions.

In [8], Gu, Pung and Zhang present a peer-to-peer sys-

tem, where peers are organized according to an ontology

based semantic network, to support distributed reasoning

for collaborative context-aware applications. The algorithm

we present in this paper works in a similar fashion to

the aforementioned push mode; it allows for continuous

monitoring of context changes in a distributed environment.

In our algorithm, however, we’re not concerned with in-

termediate context states or with informing the user of

intermediate context updates, but rather with verifying if a

certain Global Context State holds while a user is interested

in it. Also, in our work we expect all participating nodes

to be homogeneous, or to be able to provide the same

type of information, while the system presented by Gu,

Pung and Zhang could support heterogeneous peers, which

have different sensing capabilities, and then have a context

interpreter combine the data in order to infer a high-level

context. Lastly, their system is fully distributed and thus does

not rely on a central entity such as the Ambient Reasoner

which is necessary in our algorithm; it is worth noticing,

though, that the prototype used to evaluate their system used

standard desktop computers to run context producers and

interpreters, which suggests these roles may not be suitable

for execution in mobile devices.

Distributed Reasoning Architecture for a Galaxy of On-

tologies (DRAGO) is a distributed reasoning system imple-

mented as a peer-to-peer architecture, in which every peer

registers a set of ontologies and mappings [9]. In DRAGO,

the reasoning operations are implemented using local reason-

ing over each registered ontology and by coordinating with

other peers when local ontologies are semantically connected

with the ontologies registered in other peers. The reasoning

with multiple ontologies is performed by a combination of

local reasoning operations, internally executed in each peer

for each distinct ontology.

P2P-DR [10] is a system for distributed reasoning fo-

cused on Ambient Intelligence (AmI), which uses a peer-
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to-peer model and accounts for potential conflicts which

might happen during the reasoning process. Each node holds

independent (local) information, expressed as rules, and is

also able to exchange information with neighbor nodes, by

means of bridging rules. Potential conflicts which may arise

from global consolidation of local information are dealt

with by considering bridging rules as defeasible (can be

overridden) and defining trust levels between nodes in order

to settle disputes between conflicting rules. The authors

point out context data can be inconsistent, for instance

due to imprecise or faulty sensors, or become ambiguous,

when conflicting data is reported by different sources. They

highlight that ambient environments host nodes that are

heterogeneous and dynamic in nature and thus might not

be able to communicate directly or even be aware of all

nearby nodes.

A peer-to-peer inference system (P2PIS [11]) is a network

of peer theories. Each peer has a finite set of propositional

formulas and can be semantically related by sharing vari-

ables with other peers. A shared variable between two peers

is in the intersection of the vocabularies of the two peers. Not

all the variables in common in the vocabularies of two peers

have to be shared by them. Besides, two peers may not be

aware of all the variables that they have in common but only

of some of them. In a P2PIS, no peer has the knowledge of

the global P2PIS theory. P2PIS distributed algorithm splits

clauses if they share variables of several peers. Each piece of

a split clause is then transmitted to the corresponding theory

to find its consequences. The consequences that are found

for each piece of split clause must then be re-composed to

get the consequences of the clause that had been split.

DRAGO, P2P-DR and P2PIS propose distributed rea-

soning solutions considering data distributed over different

elements in an AmI system. The main concern of DRAGO

is to reason in distributed environments overcoming the

barrier of the heterogeneous knowledge representation that

independent entities in a AmI system are very likely to

employ. DRAGO relies on predefined mappings to align

different ontologies. In a similar way, P2P-DR and P2PIS are

peer-to-peer frameworks in which peers can communicate

with a subset of the other available peers to import the

knowledge necessary to answer queries based on mappings

that define how their local knowledge relates to their peers’

knowledge. In such way, P2P-DR and P2PIS are capable of

performing inference to answer queries that check if a rule

is true or false, in which the knowledge, i.e., set of literals

that represent context information, is fully distributed in a

peer-to-peer system. Nevertheless, P2P-DR and P2PIS are

not capable of answering queries with variables. Moreover,

DRAGO, P2P-DR and P2PIS are also limited by the fact

that in practical implementations of AmI it is not feasible to

build in advance mappings of all possible pairs of different

ontologies that may be needed. On the other hand, our

approach is not a fully decentralized peer-to-peer system,

as it relies on the Ambient Reasoner for mediation and

coordination. Finally, unlike DRAGO and P2PIS, in our

work we do not handle heterogeneous ontologies.

III. DISTRIBUTED REASONING OF GLOBAL CONTEXT

STATES

In distributed context-aware applications, pieces of con-

text information may be available to different agents in

the system, and it may be necessary to check if a global

condition referring to the all, or some, of the agent’s local

context states is satisfied. Such global condition is com-

monly expressed as the conjunction of antecedent predicates,

R i, in a Description Logics (DL) rule of the form R1

∧R2 ∧ ... ∧Rk ⇒C. In such rule, the consequent C is

usually an action, and the predicates Ri describe relations

between concrete context facts/data at one or more agents,

and may also contain free variables (denoted by, ?v, ?w,

etc.) which range over context facts/data of certain type.

When a rule like the above is evaluated, these free variables

are bound to sets of concrete context facts of any of the

agents. For example, if an agent’s local context state has

only facts sentMsg(addr1,Hi), and sentMsg(addr2,Hallo),
then predicate sentMsg(?a, ?msg) would cause the binding

of the pair of variables (?a, ?msg) to the set {<addr1, Hi>,

<addr2, Hello>}. The result of evaluating a DL rule with

free variables ?vi, (i= 1 . . . N), is therefore a set of tuples

T = < c1, ..., cN >, where ci is a concrete context fact,

somewhere, that is bound to the rule’s free variable ?vi, such

that the tuple T satisfies the rule’s antecedent R1 ∧R2 ∧ ...

∧Rk. Note that if the global context state does not satisfy

the rule’s antecedent, the set of tuples is empty.

Since the local context state of each agent changes spon-

taneously, and independently of the other agents’ context

state, the global condition may be satisfied only for a limited

amount of time. Thus, the main objective of distributed
reasoning over Global Context States is to detect if the

Global Context State matches the rule’s antecedent part R1

∧R2 ∧ ... ∧Rk, and if this is the case, to execute the action

of the rule’s consequent C. For this, the reasoners on the

different agents must run a distributed algorithm enabling

them to exchange partial reasoning results (the bindings of

free variables with their local context facts) until some tuple

(i.e. the combination of all partial results) satisfies the rule’s

antecedent.

In order to illustrate the above concepts, let’s look at

a very simple example: consider three nodes, n1, n2 and

n3, which repeatedly throw individual dice (d1, d2 and

d3) asynchronously, i.e. at random instants. Making an

association with the aforementioned, the current die number

plays the role of the node i context state (which here would

be a single, unary tuple (di)). So, a rule to identify the global

state in which d3’s number is odd, and is the sum of the other

two die numbers, would be:

101



even(?d1) ∧ odd(?d2) ∧ odd(?d3) ∧ equals(?d3,?d1+?d2)
⇒OddSumObtained

In this case, the only tuple set that satisfies this rule is T=

{<2, 1, 3>, <4, 1, 5>, <2, 3, 5>}, where the elements of

each tuple are T n1, T n2, and T n3, respectively.

In this particular case, we can see that the above rule can

be split in a way that each of the reasoners becomes respon-

sible for one of the predicates even/odd() - to be checked

whenever the node throws a die - and one reasoner will

evaluate predicate equals(). Moreover, the reasoners have to

exchange their data whenever some of them detects that a

new die throw - a change of its local context state - satisfies

its local predicate. In this specific example, only the reasoner

with predicate equals() also has to take into account the

latest data received from the other two reasoners. However,

there are other examples of rules where any partitioning and

assignment of predicates to the nodes, causes nodes to share

more than just one free variable, so that data does not flow

only towards one node, as in the example, but that all nodes

have to exchange partial results of their predicate evaluations

with some, or all, the other nodes.

However, we must precisely define in which case a Global

Context State (GCS) is considered to occur. Since the local

contexts that constitute a GCS can change in arbitrary and

system unknowably ways, we must consider the occurrence

of a GCS in relation to real time. This is quite different than

the concept of a distributed system’s global state [12], [13],

which is determined only by program-produced local events

at the agents and by events associated to their interactions,

and hence there is no concern about time. On the other hand,

in the case of GCS, we have to consider that the agents have

a notion of time. In particular, all agents must record the

run of real time by periodic events, a clock tick, Δt. This

assumption does not require the agents to have the same

clock tick counter, nor to have their clock tick at the same

real time. It just enforces that their Δt do not drift from

each other. With this, it is possible to define:

Definition 1: A GCS has occurred iff its constituent local

states have overlapped during at least 2 ∗ Δt, from the

perspective of each agents contributing with a constituent

local state.

This definition essentially says that only global states

which remain stable for a minimum period of time are de
facto considered, while a quick overlap of constituent local

states should be ignored. The 2 ∗ Δt limit is required due

to the fact that agents may not have their clock ticks syn-

chronized, being incremented exactly at the same moment.

In the following section we will show that this 2 ∗Δt is a

function of the system model parameters.

Based on the definition, we can now discuss the general

required properties of any distributed solution for reasoning

over Global Context State, and present an overview of the

proposed algorithm.

A. Required Properties and Premises

Any solution/algorithm for distributed rule-based reason-

ing over a Global Context State (GCS) must have the

following properties:

Convergence:
if the GCS satisfying the antecedents of a rule

R remains stable for a sufficiently long period of

time, then eventually the algorithm will evaluate

that the rule has been satisfied.

Safety:
if the algorithm detects that the antecedents of rule

R have been satisfied, then the corresponding GCS

has actually occurred at some moment during the

processing of the algorithm.

The convergence property leaves open the possibility that

the solution never converges, if the GCS defined by the rule

stays valid only for short times (yet longer than 2 ∗Δt). In

such case, due to the required exchange of messages between

the reasoners, it may be impossible for them to collectively

grasp this short-lived Global Context State. However, it is

worth noting that the convergence property does not state

that the GCS will be valid at the moment when the algorithm

detects it, but that it detects that the GCS has in fact occurred

in the past. This detection delay may be inevitable due to

the processing and message transmission latencies.

The safety property, on the other hand, requires the

solution to be correct in that it never detects a GCS that has

never occurred in the sense stated in Definition 1. Since this

definition is based on the notion of time, it requires a syn-

chronous model for a distributed system, i.e., a model where

the maximum processing time and message transmission

latency are constant and well-known. Moreover, we make

other assumptions about the distributed system, summarized

as follows:

• Each agent is capable of doing all local processing re-

lated to one incoming request (i.e. handle any incoming

or outgoing messages plus evaluate any DL predicates

in regard to its local context state in less than λ time

units;

• Agents do not fail, and stationary agents can be found

and are always reachable by any other agent. However,

the total number of mobile agents is variable;

• Message delivery is reliable and follows FIFO ordering;

• All agents have a unique ID and communication ad-

dress/endpoint;

• The clocks of all agents do not drift from each other;

• The timer period at each agent (Δt) is much larger

than the communication and processing latencies (i.e.,

δ + λ � Δt);
• Each reasoner on a agent checks its local context state

periodically and does this in an atomic way and in a

negligible amount of time.

• The periodic check of local context state is stateful,
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meaning that it does not just grasp the momentaneous

state of local context resources/sensors, but also reg-

isters any change of context state that might have

occurred since the previous check, even if this change

was very quick.

Without this last assumption about statefulness of context

probing, it would be impossible to ensure the safety property,

i.e., that a Global Context State that did not actually occur -

e.g. the overlap was less than 2∗Δt - would not be detected

by the agents. In other words, we need the testimonies of

very quick local context changes to invalidate the occurrence

of associated Global Context States.

B. Overview of the Algorithm

As previously mentioned, we assume that the system has

a single stationary agent which is associated with a place/lo-

cation (e.g. the conference site), and which will be the

communication mediator and coordinator of the reasoning

process. This agent will execute the Ambient Reasoner, and

for the cooperative reasoning, all mobile agents will interact

only with this Ambient Reasoner. From this point on, from

our algorithm’s perspective, we will refer to mobile agents

simply as peers or by the name of the corresponding role

they play in the algorithm.

The algorithm essentially works as follows: whenever an

application on a a Requesting Peer (ReqP) needs to evaluate

a Global Context State, it submits the corresponding DL

rule to the middleware at this peer1 . The rule is then

partially evaluated at ReqP, taking into account its current

local context state, and then forwarded to the Ambient

Reasoner with the partial results (i.e. a set of tuples denoted

by T I) produced by ReqP. When this message is received

by the Ambient Reasoner, it will also partially evaluate

some parts of the rule based on its local context state and

the partial results received from ReqP. This results in yet

another new set of possible partial results (denoted by T A),

but where some of the rule’s free variables (related to the

other peers’ context facts) are still unbound, i.e. undefined.

Then, the Ambient Reasoner broadcasts the rule and the

partial results (T I and T A) to all other participating peers,

requesting them to reply whenever their local context states,

together with the partial results T I and T A, satisfy the

rule antecedents.

Figure 1 shows a diagram which represents the main

architectural components used in the algorithm.

IV. SIMULATION

A. Sinalgo

In order to simulate the proposed algorithm’s execution

we used Sinalgo [14], a free open-source Java framework

for validating and testing network algorithms in mobile

1We assume that split of the rule is pre-defined by the application and
sent as part of the submission.

Figure 1: Architectural diagram of the components used in

our algorithm.

networks. Sinalgo allows for quick prototyping of network

algorithms in Java, easy extensibility and customization, two

and three dimensional network graphs, plus synchronous

and asynchronous simulations. It includes a network graph

visualization utility which can be used to visually inspect an

algorithm’s execution steps.

B. Scenario and Variables

We propose a general simulation scenario similar to the

one mentioned in Section I: during a small conference, an

attendee is interested in engaging in a group discussion with

nearby attendees who share a common interest. For that

purpose, the attendee must rely on a reasoning process to

assess the interests of other attendees, to determine if there

are enough attendees nearby that share a common interest

in order to have a group discussion and, in case so, to find

out who are these attendees. The attendee could also benefit

from knowing if there are any available rooms in order to

host the group discussion, although room unavailability will

not stop the discussion from happening if there are enough

attendees with a common interest nearby.

We assume all attendees are potentially interested in group

discussions and, thus, are willing to share their own interests

and current locations to support the reasoning process.

We also assume attendees can move within the conference

grounds, in order to attend sessions in different rooms, and

that their interests change as a result of attending sessions

about different topics. This effectively means that both

attendees positions and interests change throughout time.

Room availability to host group discussions also changes

throughout time, as conference sessions have different time

schedules. In addition, since it is a small conference, we take

for granted that the organizers are able to provide reliable

connectivity access with a single central communication hub.

In this scenario, the attendee who is interested in finding

nearby attendees with a common interest plays the role

of the Requesting Peer (ReqP), as it wants to evaluate

a Global Context State; the other attendees play the role

of Participating Peers (ParP), as they contribute to the
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reasoning process with partial results; and finally, the central

communication hub provided by the conference organizers

plays the role of the Ambient Reasoner, since it is used to

mediate and coordinate the reasoning process. According to

our algorithm, we assume that for all reasoning purposes,

attendees only interact with the central communication hub,

and not directly between themselves. Table I summarizes

the mapping between the entities involved in the scenario,

in our algorithm and in Sinalgo.

Scenario Algorithm Sinalgo

Attendee interested Requesting Node
in promoting Peer (PeerNode)
group discussions
Other attendees Participating Node

Peer (PeerNode)
Central comm. hub Ambient Node

Reasoner (AmbientReasoner)

Table I: Mapping between the proposed scenario, our algo-

rithm and Sinalgo entities.

The Global Context State looked for in this scenario can

be expressed by the following Description Logic rule, which

is cooperatively evaluated among the Ambient Reasoner, the

Requesting Peer and the Participating Peers:

InCenter(?ReqP, ?Region) ∧CurrentInterest (?ReqP, ?I)
∧ InsideRegion(?P, ?Region) ∧CurrentInterest (?P, ?J)

∧Equals(?I, ?J) ∧Available(?Room) ⇒NotifyAll(?ReqP, ?P)

In this rule, variables ?ReqP and ?P bind, respectively,

to the Requesting Peer and any Participating Peers that

are nearby, while ?Region describes the dynamic perimeter

region around ?ReqP (as it moves), ?I and ?J bind to the

current interest of the Requesting and Participating Peers,

respectively, and ?Room binds to the name/number of the

rooms that are available at the moment. As rule’s predicates

are self-explanatory, one could imagine that InCenter() and

CurrentInterest() — its 1st occurrence in the rule — are

evaluated at the Requesting Peer, while each of the Partic-

ipating Peers evaluates InsideRegion() and CurrentInter-
est() — 2nd occurrence — , and Equals() and Available()
would be evaluated at the Ambient Reasoner. It is worth

mentioning that the above rule is just one of several possible

rules that describe the Global Context State. Other, perhaps

more detailed, rules could be used instead of this one.

Both types of attendees (Requesting Peer and Participating

Peers) and the central communication hub (Ambient Rea-

soner) are implemented in Sinalgo as standard simulation

nodes, each with its own class. Initial node deployment relies

on a circle pattern (Circle distribution model) with the cen-

tral communication hub in the center and attendees around

it. Network edges, Sinalgo’s abstraction of communication

links between nodes that are within communication range,

are created only between attendees and the central commu-

nication hub. Since we consider the conference’s wireless

network to be reliable, we do not use interference, we use re-

liable message delivery (ReliableDelivery reliability model)

and constant transmission time for messages (ConstantTime

message transmission model in Sinalgo) equal to 1 round.
Attendees’ mobility is implemented according to two

different models. The first model is Sinalgo’s standard

RandomWayPoint, which moves each node to a randomly

selected waypoint and then waits at that point for a certain

amount of time, before choosing another waypoint and

repeating the same procedure. Both the movement’s speed

and the waiting time are determined according to standard

Sinalgo distributions (Gaussian and Poisson, respectively).

The second model, which we implemented based on the

previous model, is called Random Waypoint with Fixed
Meeting Points. It works in a similar fashion to the standard

RandomWayPoint model, however, it allows for up to two

fixed meeting points to be configured. When it selects a

new waypoint, it has a configurable probability of choosing

one of the meeting points instead of a random waypoint.

Consequently, it is possible to use this model’s configuration

in order to increase the likehood of attendees with similar

interests getting near each other. The central communication

hub is placed at the center of the conference grounds and

does not move (NoMobility). All the models used in the

simulation are summarized in table II.

Model Type Model(s) Used

Mobility (Attendees) RandomWayPoint
Random Waypoint w/ Meeting Pts

Mobility (Comm. Hub) NoMobility
Connectivity StaticConnectivity
Distribution Circle
Interference (not used)
Reliability ReliableDelivery
Transmission ConstantTime (= 1)

Table II: Summary of Sinalgo models used in the simulation.

We assume that each attendee switches between three

different interests: A, B or C. Interests are chosen randomly

and last for a random period of time, measured in simula-

tion rounds, after which they may change. The minimum

and maximum durations for interests are configured by

custom parameters in Sinalgo’s standard configuration file;

by default they are set to 25 and 40, respectively. It is

also possible to configure the timeout (Δt), measured in

simulation rounds, before each entity participating in the

reasoning process will need to reevaluate its own context

and act accordingly as predicted by the algorithm.
For our simulation we used Sinalgo’s standard deploy-

ment field, which is 1000x1000, in order to simulate the

conference grounds. We consider that an attendee is nearby

another attendee when the distance between them is less than
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250. In this manner, a group discussion can only happen

when enough attendees that share a common interest have

gathered within a 250 radius of the attendee who is interested

in promoting the discussion. The amount of attendees needed

to start a group discussion can be configured by means of

establishing the minimum response bag size. Moreover, since

we are not concerned with short lived Global Context States

which might not be detected by the algorithm, we require

that attendees must maintain a common interest and stay

within range for at least twice the timeout value (2 ∗Δt).
We used Sinalgo’s standard CustomGlobal class in order

to implement a global monitor which detects when the

simulation is over, maintains some statistics and tracks the

detection delay between reasoning occurs and the simulation

finishes. In order to check if the algorithm has finished its

execution, it checks at the end of each round if all peers have

been notified of the end of the reasoning process. It also

keeps track of all Participating Peers by inspecting them

at every round; it checks, for each of them, if its interest

matched the interest of the Requesting Peer when it was

evaluated and if its distance to the Requesting Peer was

within the acceptable range when it was evaluated. Doing

so allows it to keep track of how long Participating Peers

who share an interest with the Requesting Peer and are near

it have stayed that way; thus it can determine, externally to

the algorithm, when reasoning should become stable.

In figure 2 we present a screenshot of the standard Sinalgo

deployment field already loaded with a central communica-

tion hub, identified by the blue square in the middle and 10

attendees, identified by the person icon. The circle around

attendee 2 identifies it as the Requesting Peer and determines

the range of attendees considered to be nearby. In figure 3 we

present another screenshot of the simulation, this time after

reasoning has finished. The Requesting Peer is identified by

the green color, while the nearby peers who share a common

interest are identified by the blue color.

Figure 2: Sinalgo screenshot of reasoning about to start.

We have run simulations in three settings. In each setting

we work with a fixed number of attendees (20) excluding the

one who originates the reasoning process (Requesting Peer)

Figure 3: Sinalgo screenshot of finished reasoning.

and we measure the amount of time needed for reasoning

to stabilize, the total number of point-to-point messages ex-

changed and the detection delay (the time between reasoning

has stabilized and the algorithm finishes its execution). In

the simulation, timeouts (Δt) occur synchronously every

10 rounds; this effectively means that every 10 rounds

each participating entity will reevaluate its context and act

accordingly. A brief description of each setting follows.

In the first setting, we vary the minimum response bag

size based on percentages, in steps of 5% and up to 35%,

of the number of attendees (corresponding to response bag

sizes from 1 to 7) and the mobility model. We experiment

both with the standard RandomWayPoint mobility model,

varying the movement’s speed, and with the custom Random

Waypoint with Fixed Meeting Points model, varying the

amount of fixed meeting points available at the conference

grounds, but always with a 50% chance of choosing a fixed

meeting point instead of a random waypoint. In this setting

we are interested in observing how the mobility models, as

well as the relation between the number of attendees and

the minimum response bag size, influence the simulation.

In the second setting, we vary the range (minimum and

maximum values) that defines how long a local context

(interest) lasts based on the amount of time required for

a Global Context State to be considered stable by the

algorithm (2 ∗ Δt, where Δt = 10). In this setting we are

interested in observing how much local context volatility

influences the reasoning process, in particular in terms of the

time taken to finish reasoning and the amount of messages

exchanged. We use both the Random Waypoint with Fixed

Meeting Points mobility model, with one and two meeting

points, and the standard RandomWayPoint model.

In the third setting, we vary the probability of attendees

heading to a meeting point, from 25% to 75%. In this setting

we are interested in observing how much the probability of

attendees heading to meeting points and the existence of

meeting points influence the reasoning process. We stick to

the Random Waypoint with Fixed Meeting Points mobility

model, with both one and two meeting points.
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C. Results

In this section we present the results for the simulation

settings. Each variation of a setting was executed 10 times

and the numbers shown in this section correspond to the

rounded averages of the executions. We present, for each

setting, the simulation duration (measured in Sinalgo rounds)

and the number of messages exchanged.

When accounting for messages exchanged during the

algorithm’s execution, we separate point-to-point messages

(i.e., messages sent directly from specific peers to the Am-

bient Reasoner or in the opposite direction) and broadcast

messages (i.e., messages sent from the Ambient Reasoner

to all peers). We choose not to present the total number of

broadcast messages, as that number is rather deterministic:

the Ambient Reasoner only does a broadcast once it receives

an EVAL message from the Requesting Peer; the Requesting

Peer only sends an EVAL message once it timeouts; thus,

we expect broadcasts to occur in regular timeout intervals,

which means the total number of broadcasts can be estimated

by dividing the simulation duration by the timeout. Indeed,

our results showed that assumption to be true.

We also choose not to present the detection delays ob-

served during the simulations. The detection delay is the

number of rounds between the moment that the Global

Context State becomes stable (i.e., there are enough replies

with count ≥ 2 ∗Δt ) and the algorithm finishes executing.

Our results showed that it is a constant value (3 rounds),

which is the time needed for the Participating Peers to send

their last messages to the Ambient Reasoner and for the

Ambient Reasoner to send the results to the contributing

peers.

1) Simulation Setting 1: Figure 4 presents the simulation

results for the first setting, where we vary the minimum

response bag size and the mobility model. It shows some of

the algorithm’s characteristics.
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Figure 4: Minimum response bag size versus duration of the

simulation for setting 1.

First, and perhaps more obvious, it is clear that as

we increase the minimum response bag size, the longer

the reasoning process lasts. This is expected, as a greater

minimum response bag size demands that more attendees

have a similar interest and are near each other. Figure 4

depicts how the minimum response bag size influences the

duration of the simulation. It shows that as we linearly

increase the minimum response bag size, the duration of

the simulation increases exponentially. This implies not only

that the minimum response bag size is a key factor for the

performance of the algorithm, but also that the algorithm is

better suited for reasoning among small groups of peers.

Concerning the mobility models, the results show that the

faster the attendees move, the longer the reasoning process

lasts, as it is more difficult to get the required number of

attendees with a similar interest in the same area. Moreover,

the results show that the introduction of meeting points help

to promote colocation of attendees, increasing the likehood

of attendees with similar interests getting near each other and

thus reducing the duration of the reasoning process. This can

be observed in figure 4, which shows that having a single

meeting point results in a shorter reasoning process than

having two meeting points, as attendees tend to gather at a

single location and thus the probability that attendees with

similar interests will get near each other increases.

2) Simulation Setting 2: Figure 5 depicts how local

context volatility influences the duration of the simulation.

Consistently with the first setting’s results, the number of

exchanged point-to-point messages also increases as the

duration of the simulation increases. Probably the most

interesting pattern which can be observed is that less volatile

(longer lasting) local contexts result in shorter reasoning

processes than more volatile local contexts. This is most

likely due to the fact that the more stable the local contexts

are, the more time (and thus the greater the chance) there is

that attendees with similar interests will get near each other

at some point in time.

3) Simulation Setting 3: Figure 6 presents the simulation

results for the third setting. The results for this setting clearly

show that adding meeting points to the simulation result in

shorter reasoning processes. Moreover, it shows that adding

a single meeting point shortens the reasoning process more

than adding two meeting points, which is also consistent

with the previous settings. This is especially true as we

increase the probability of attendees heading to meeting

points.

V. CONCLUSION

In this paper, we have proposed a distributed algorithm for

detecting Global Context States (GCS) among an arbitrary

set of mobile peers, presented its applicability for coopera-

tive reasoning for pervasive collaborative applications, and

have conducted some simulation experiments to evaluate
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Figure 5: Local context volatility versus duration of the

simulation for setting 2.
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Figure 6: Probability of going to a meeting point versus

duration of the simulation, for one and two meeting points.

the performance of the algorithm in different mobility and

context volatility scenarios.

The obtained results show that the convergence time of the

algorithm grows exponentially with the percentage of peers

that are required to contribute to the Global Context State

(i.e. the relative size of response bag), but is not so much

sensitive to context volatility. Moreover, the results show that

with more regular mobility patterns, e.g. with some fixed

“meeting points”, the convergence time drops significantly,

and that the communication complexity is proportional to

the convergence time, making it feasible for such scenarios

with less mobility entropy. We have also identified that the

detection delay is very small and almost constant, suggesting

that Global Context States will be informed timely to users.

Collectively, theses results suggest that the approach can

be applied in practice in situations where the percentage

of contributing peers is less than 35% of the total number

of peers, when there exists some user clustering points, such

as meeting points or coffee tables, and the Global Context

State is defined by a few context variables, which do not

change very frequently.

A limitation of our algorithm is the fact that it requires

a careful calibration of the timer period (i.e. Δt), which is

inherently dependent on the application domain. However,

once the minimum period of stability of a Global Context

State to be inferred is determined, then our algorithm does

a fairly good job in detecting it. Another point of criticism

may be the premise that all peers must adopt exactly the

same timer periodicity. However, if we assume that each

peer is expected to run the same client program so as to

have the ability to perform the decentralized reasoning, then

this client would of course use a common timer periodicity.

Also, in regard to the assumption that local clocks don’t

drift from each other, we believe that current processor clock

technology is already capable of guaranteeing this property

for periods of time which exceed, by large, the time scale

of the expected time of use of our system.

It is worth noting also that in our current implementa-

tion of the algorithm (used in the simulations) the peers

and the Ambient Reasoner perform only the detection of

the specific Global Context State of the small conference

scenario (Section IV-B). Hence, our implementation does

not yet support general purpose reasoning of DL rules –

expressing Global Context States — nor the rule splitting

and distribution process among the peers. Hence, as part

of future research we plan to introduce DL rule processing

engines at the peers, and evaluate the performance of the

complete reasoning algorithm.

A. Future work

This work is just a first step towards a decentralized

reasoning approach, and we envisage several possible lines

of future work, both as improvements of the algorithm, as

well as in regard to the reasoning approach, as a whole.

Regarding the algorithm, in our simulations we only

evaluated its convergence using two simple local context

variables: location and a small set of (three) interests. It

would be interesting, though, to evaluate the convergence

on scenarios where the global context depends on more

local context variables, possibly with different volatilities.

Still concerning the algorithm’s convergence, we showed

that the minimum response bag size appears to be central to

that matter, however we did not delve into trying to refine

and optimize the convergence time, which could result in

some improvement to the algorithm. Also, we believe some

of the algorithm’s premisses could be weakened in order

to allow for further testing and adjustments to the algo-

rithm. Examples of weakened premisses include different

evaluation timeouts at each peer and local clocks with a

small drift. Ultimately, these adjustments could result in an

asynchronous algorithm.
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Regarding the reasoning approach, we believe it could be

interesting to define a fully decentralized approach. In this

approach, the Ambient Reasoner could become a role. Thus,

instead of relying on a single pre-determined peer, any peer

with sufficient resources and low mobility could assume the

Ambient Reasoner role throughout the reasoning process.
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